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We considered the driven damped harmonic oscillator and resonance in detail.  The 
response to a cosine (cos(𝜔𝜔)) driving force in the long-term limit is: 𝑥(𝑡) = 𝐴 cos(𝜔𝜔 − 𝛿), 
where 𝜔 is the frequency of the driving force.  This represents the long-time persistent 
solution of the motion.  It shows that the oscillator eventually adopts the same frequency as 
the driving force.   

The equation of motion 𝑥̈ + 2𝛽𝑥̇ + 𝜔0
2𝑥 = 𝑓0 cos(𝜔𝜔) involves a linear operator 

𝐿 = 𝑑2

𝑑𝑡2
+ 2𝛽 𝑑

𝑑𝑑
+ 𝜔0

2 acting on the displacement function 𝑥(𝑡) and relating it to the driving 
force 𝑓(𝑡) as 𝐿 𝑥(𝑡) = 𝑓(𝑡).  The linearity property means that the operator can operate on 
any number of solutions at the same time: 𝐿 [𝛼1𝑥1(𝑡) + 𝛼2𝑥2(𝑡)] = 𝛼1𝑓1(𝑡) + 𝛼2𝑓2(𝑡), for 
arbitrary weighting coefficients 𝛼1 and 𝛼2.  In other words, when two driving forces act we 
can consider the response of the system to each force individually, and then simply add the 
two solutions to get the full response of the oscillator.  (Note that this will NOT work if we 
had a non-linear operator, for example in the case of a damping force quadratic in the 
velocity, leading to a term 𝛾𝑥̇2.)  This property allows us to consider an arbitrary periodic 
driving force 𝑓(𝑡 + 𝑇) = 𝑓(𝑡), where 𝑇 is the period of the driving force, as being made up 
of an infinite superposition of cosine driving forces: 𝑓(𝑡) = ∑ 𝑓𝑛  cos(𝑛𝑛𝑛)∞

𝑛=0 , where we 
assume that a Fourier cosine expansion is adequate to describe the periodic driving force.  
The linearity of the problem allows us to write down the general solution as 𝑥(𝑡) =
∑ 𝐴𝑛  cos(𝑛𝑛𝑛 − 𝛿𝑛)∞
𝑛=0 , with 𝐴𝑛 = 𝑓𝑛/�(𝜔02 − (𝑛𝑛)2)2 + 4𝛽2𝑛2𝜔2 and 𝛿𝑛 =

tan−1 � 2𝛽𝛽𝛽
𝜔0
2−(𝑛𝑛)2�.  With this we can describe the motion of the driven system subjected to 

more general periodic driving forces, such as a triangle wave, periodic pulsed driving forces, 
etc. 

We can go one step further and consider the solution for an arbitrary non-periodic driving 
force 𝐹(𝑡).  In this case we consider the driving force to be a series of sharp impulses applied 
to the initially stationary oscillator at its equilibrium position.  The force 𝐹(𝑡) is 
approximated as a series of impulses at periodic time steps (separated by a short time 𝜏), and 
the solutions for the position of the oscillator after each impulse applied at time step 𝑡𝑛 is 

given by 𝑥(𝑡) = �
0 for 𝑡 < 𝑡𝑛

𝑣0
𝜔1
𝑒−𝛽(𝑡−𝑡𝑛) sin[𝜔1(𝑡 − 𝑡𝑛)]  for 𝑡 ≥ 𝑡𝑛

.  Here 𝑣0is the magnitude of the 

initial kick of the oscillator from rest.  Note that each solution is independent of all the 
others, and each assumes an initial condition of 𝑥𝑛(𝑡 = 𝑡𝑛) = 0.  The driving force can be 
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written as a sum of many individual impulses as 𝑓(𝑡) = 𝐹(𝑡)/𝑚 = ∑ 𝑓𝑛(𝑡𝑛)𝑁
𝑛=−∞ , stretching 

back to 𝑡 = −∞ up to the present time step 𝑡𝑁 = 𝑡.  Making use of the linearity of the 𝐿 
operator discussed above, we can form the solution to this arbitrary driving force as a sum of 
all of the elementary responses to all of the previous impulses as follows: 𝑥(𝑡) =
∑ 𝑓𝑛(𝑡𝑛)𝜏

𝜔1

𝑁
𝑛=−∞ 𝑒−𝛽(𝑡−𝑡𝑛) sin�𝜔1(𝑡 − 𝑡𝑛)�, valid for 𝑡 > 𝑡𝑁.  As time goes forward, you have 

to add more impulses to the sum (assuming that the driving function 𝑓𝑛(𝑡𝑛) is non-zero).  We 
recover the continuous forcing function by taking the time interval 𝜏 → 𝑑𝑑′ and 𝑡𝑛 → 𝑡′ and 

letting the sum go over into an integral: 𝑥(𝑡) = ∫ 𝑓�𝑡′�
𝜔1

𝑡
−∞ 𝑒−𝛽�𝑡−𝑡′� sin�𝜔1(𝑡 − 𝑡′)� 𝑑𝑡′.  This 

can be written as 𝑥(𝑡) = ∫ 𝐹(𝑡′)𝑡
−∞ 𝐺(𝑡, 𝑡′)𝑑𝑡′, defining the Green’s function 𝐺(𝑡, 𝑡′) =

�
𝑒−𝛽�𝑡−𝑡

′� sin�𝜔1�𝑡−𝑡′��

𝑚𝜔1
 for 𝑡 ≥ 𝑡′

0 for 𝑡 < 𝑡′
.  Note that this Green’s function assumes that the particle 

starts from a state of rest at the equilibrium point.  One has to re-derive the Green’s function 
for a different initial condition. 

We did an example of the Green’s function solution for a non-periodic driving force that 

acts for a more-or-less fixed time interval, of the form: 𝐹(𝑡) = � 0 for 𝑡 < 0
𝐹0𝑒−𝛾𝑡 for 𝑡 ≥ 0.  The 

solution for the response of the mass is 

𝑥(𝑡) = �
0 for 𝑡 < 0

𝐹0/𝑚
(𝛾−𝛽)2+𝜔12

�𝑒−𝛾𝑡 − 𝑒−𝛽𝑡 �cos(𝜔1𝑡) −
𝛾−𝛽
𝜔1

sin(𝜔1𝑡)��   for 𝑡 ≥ 0.  This complicated 

function describes the motion of the harmonic oscillator while the force is acting, and for all 
times into the future. 

We moved on to the question of how to make Newton’s Laws of motion work in non-
inertial reference frames.  This turns out to be useful for a number of reasons.  First we often 
insist on using coordinate systems that are non-inertial, such as the (Latitude, Longitude, 
Altitude) “GPS” reference frame attached to the surface of the rotating earth.  Secondly, 
some physical problems are easier to attack when seen from non-inertial reference frames, 
such as the “co-rotating frame” rotating at the Larmor precession frequency in NMR.  
Another example is the description of small oscillations about an equilibrium point in a non-
inertial reference frame. 

We considered first the case of a reference frame undergoing constant linear acceleration 
𝐴.  By comparing a description of the motion of an object as seen from an inertial reference 
frame to that same object seen from a non-inertial reference frame, we concluded that 
Newton’s second law in the non-inertial reference frame must be written as 𝑚𝑟̈ = 𝐹⃗𝑛𝑛𝑛 −
𝑚𝐴.  The “inertial force”  𝐹⃗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −𝑚𝐴 must be added to the net force to make the 
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equation of motion work in the non-inertial frame.  We experience this inertial force as a 
backwards force when sitting in an aircraft that is accelerating down the runway for takeoff. 

Making Newton’s second law work in a rotating reference frame is more of a challenge.  
Consider a rigid body moving through space.  A rigid body is one in which the distances 
between the particles do not change during the motion.  We can start by describing the 
motion of the center of mass 𝑅�⃗ 𝐶𝐶(𝑡) and treat it as the motion of a particle of mass 𝑀 equal 
to the total mass of the object.  With an extended rigid body we have the additional degree of 
freedom that the object can also be rotating or tumbling.  We can treat the center of mass as a 
stationary point during the motion.  Euler’s theorem says that the most general motion of that 
object is a rotation about an axis going through the center of mass.  This rotational motion is 
specified by a direction of the rotation axis and the magnitude of the rotation rate.  Rotation 
is specified by an axis of rotation 𝑢� , and a rate 𝜔, so that 𝜔��⃗ = 𝜔𝑢� .  The rotation axis goes 
through the fixed point in the object.  We found that the linear velocity of a particle at 

location 𝑟 inside or on the object is given by 𝑣⃗ = 𝜔��⃗ × 𝑟.  In other words 𝑑𝑟
𝑑𝑑

= 𝜔��⃗ × 𝑟, or in 

general for any vector 𝑒 in the rigid body 𝑑𝑒
𝑑𝑑

= 𝜔��⃗ × 𝑒. 


